#ifndef VEC3_H #define VEC3_H #include "rayTracer.h" class vec3 { public: double e[3]; vec3() : e{0, 0, 0} {} vec3(double e0, double e1, double e2) : e{e0, e1, e2} {} double x() const { return e[0]; } double y() const { return e[1]; } double z() const { return e[2]; } vec3 operator-()const { return vec3(-e[0], -e[1], -e[2]); } double operator[](int i) const { return e[i]; } double& operator[](int i) { return e[i]; } vec3& operator+=(const vec3& v) { e[0] += v.e[0]; e[1] += v.e[1]; e[2] += v.e[2]; return *this; } vec3& operator*=(double t) { e[0] *= t; e[1] *= t; e[2] *= t; return *this; } vec3& operator/=(double t) { return *this *= 1/t; } double length() const { return sqrt(lengthSquared()); } double lengthSquared() const { return e[0]*e[0] + e[1]*e[1] + e[2]*e[2]; } bool nearZero() const { // Return true if the vector is close to zero in all dimensions. auto s = 1e-8; return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s); } static vec3 random() { return vec3(randomDouble(), randomDouble(), randomDouble()); } static vec3 random(double min, double max) { return vec3(randomDouble(min,max), randomDouble(min,max), randomDouble(min,max)); } }; // point3 is just an alias for vec3, but useful for geometric clarity in the code. using point3 = vec3; // Vector Utility Functions. inline std::ostream& operator<<(std::ostream& out, const vec3& v) { return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2]; } inline vec3 operator+(const vec3& u, const vec3& v) { return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]); } inline vec3 operator-(const vec3& u, const vec3& v) { return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]); } inline vec3 operator*(const vec3& u, const vec3& v) { return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]); } inline vec3 operator*(double t, const vec3& v) { return vec3(t * v.e[0], t * v.e[1], t * v.e[2]); } inline vec3 operator*(const vec3& v, double t) { return t * v; } inline vec3 operator/(const vec3& v, double t) { return (1/t) * v; } inline double dot(const vec3& u, const vec3& v) { return u.e[0] * v.e[0] + u.e[1] * v.e[1] + u.e[2] * v.e[2]; } inline vec3 cross(const vec3& u, const vec3& v) { return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1], u.e[2] * v.e[0] - u.e[0] * v.e[2], u.e[0] * v.e[1] - u.e[1] * v.e[0]); } inline vec3 unitVector(const vec3& v) { return v / v.length(); } inline vec3 randomInUnitDisk(void) { while (true) { auto p = vec3(randomDouble(-1, 1), randomDouble(-1, 1), 0); if (p.lengthSquared() < 1) return p; } } inline vec3 randomInUnitSphere() { while (true) { auto p = vec3::random(-1,1); if (p.lengthSquared() < 1) return p; } } inline vec3 randomUnitVector() { return unitVector(randomInUnitSphere()); } inline vec3 randomOnHemisphere(const vec3& normal) { vec3 onUnitSphere = randomUnitVector(); if (dot(onUnitSphere, normal) > 0.0) // In the same hemisphere as the normal return onUnitSphere; else return -onUnitSphere; } inline vec3 reflect(const vec3& v, const vec3& n) { return v - 2 * dot(v, n) * n; } inline vec3 refract(const vec3& uv, const vec3& n, double etaiOverEtat) { auto cosTheta = fmin(dot(-uv, n), 1.0); vec3 rOutPerp = etaiOverEtat * (uv + cosTheta * n); vec3 rOutParallel = -sqrt(fabs(1.0 - rOutPerp.lengthSquared())) * n; return rOutPerp + rOutParallel; } #endif