Files
Raytracer/vec3.h
2024-07-03 15:09:13 -04:00

167 lines
4.0 KiB
C++

#ifndef VEC3_H
#define VEC3_H
#include "rayTracer.h"
class vec3 {
public:
double e[3];
vec3() : e{0, 0, 0} {}
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {}
double x() const {
return e[0];
}
double y() const {
return e[1];
}
double z() const {
return e[2];
}
vec3 operator-()const {
return vec3(-e[0], -e[1], -e[2]);
}
double operator[](int i) const {
return e[i];
}
double& operator[](int i) {
return e[i];
}
vec3& operator+=(const vec3& v) {
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& operator*=(double t) {
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3& operator/=(double t) {
return *this *= 1/t;
}
double length() const {
return sqrt(lengthSquared());
}
double lengthSquared() const {
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
bool nearZero() const {
// Return true if the vector is close to zero in all dimensions.
auto s = 1e-8;
return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s);
}
static vec3 random() {
return vec3(randomDouble(), randomDouble(), randomDouble());
}
static vec3 random(double min, double max) {
return vec3(randomDouble(min,max), randomDouble(min,max), randomDouble(min,max));
}
};
// point3 is just an alias for vec3, but useful for geometric clarity in the code.
using point3 = vec3;
// Vector Utility Functions.
inline std::ostream& operator<<(std::ostream& out, const vec3& v) {
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
inline vec3 operator+(const vec3& u, const vec3& v) {
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
inline vec3 operator-(const vec3& u, const vec3& v) {
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline vec3 operator*(const vec3& u, const vec3& v) {
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
inline vec3 operator*(double t, const vec3& v) {
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
inline vec3 operator*(const vec3& v, double t) {
return t * v;
}
inline vec3 operator/(const vec3& v, double t) {
return (1/t) * v;
}
inline double dot(const vec3& u, const vec3& v) {
return u.e[0] * v.e[0]
+ u.e[1] * v.e[1]
+ u.e[2] * v.e[2];
}
inline vec3 cross(const vec3& u, const vec3& v) {
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
inline vec3 unitVector(const vec3& v) {
return v / v.length();
}
inline vec3 randomInUnitDisk(void) {
while (true) {
auto p = vec3(randomDouble(-1, 1), randomDouble(-1, 1), 0);
if (p.lengthSquared() < 1) return p;
}
}
inline vec3 randomInUnitSphere() {
while (true) {
auto p = vec3::random(-1,1);
if (p.lengthSquared() < 1)
return p;
}
}
inline vec3 randomUnitVector() {
return unitVector(randomInUnitSphere());
}
inline vec3 randomOnHemisphere(const vec3& normal) {
vec3 onUnitSphere = randomUnitVector();
if (dot(onUnitSphere, normal) > 0.0) // In the same hemisphere as the normal
return onUnitSphere;
else
return -onUnitSphere;
}
inline vec3 reflect(const vec3& v, const vec3& n) {
return v - 2 * dot(v, n) * n;
}
inline vec3 refract(const vec3& uv, const vec3& n, double etaiOverEtat) {
auto cosTheta = fmin(dot(-uv, n), 1.0);
vec3 rOutPerp = etaiOverEtat * (uv + cosTheta * n);
vec3 rOutParallel = -sqrt(fabs(1.0 - rOutPerp.lengthSquared())) * n;
return rOutPerp + rOutParallel;
}
#endif